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Abstract:  A synthetic travel time dataset is provided 
without any information about the structures, we are 
going to apply delay-time and travel time tomography 
methods using the slope-curvature   features    to find 
out what the structures look like.  Solve a first-arrival 
travel time tomography problem for layered earth 
model with sharp layer interfaces. The curvature-
slope descriptors derived from the travel time curve 
will allow us to produce a clustering process using 
structural similarity. Each segment entry will time 
travel to reverse identification method with 
constraints on the eigenvalues with model 
regularization applied. 

Introduction 

 In a series of paper [Berryman, 1989a: Berryman 1989b, 
Berryman 1990] the author has developed a stable 
iterative reconstruction methods for first arrival travel time 
inversion. The theory general behind this novel approach 
and its extension will be described in the present paper. 
The main idea behind the new approach may be 
summarized as follow:  When an inverse problem can be 
for formulated so the data are minima of one of the 
variation problem of mathematical physics. Feasibility 
constrains of eigenvalue can be found for inversion linear 
problem. These constrains guarantee that that optimal 
solution of the inverse problem lie in a convex-concave 
feasible region of model space. Furthermore, point on the 
boundary of these convex –concave regions can be found 
in constructive fashion.  For any convex –concave 
function over model space, a local minimum or  maximum 
or inflection point of the function is also minimum or 
maximum global other case cross over point . in light of 
the structure similarity induced on the model space by the 
feasibility constrains , we can also obtain a series of 
results about the structure of the solution set presented 
for travel time inversion problem. 

This paper presents an application from an analytic 
formula for the generalized inverse matrix associated with 
vertical seismic profile (VSP) and common-depth –
point(CDP) travel time equations its functional form 
explicitly depends upon the source –receiver geometry 

and its validity is restricted  to horizontally layered earth 
models where  is negligible ray bending. The importance 
of the generalized inverse is that it can be used to derive 
closed-form expressions for the covariance matrix, 
condition number, resolution matrix, and average inverse 
eigenvalues for the travel time equations; these formulas 
are useful in designing source-receiver geometries which 
optimize velocity reconstruction by travel time inversion. 
These formulas also provide a fundamental 
understanding of some resolution limitations associated 
with earth tomography experiments.  
A dynamic system, the pattern of behavioral of a model is 
characterized by slope change rate in the state variables. 
Using analysis of the eigenvalues, we conclude that the 
dynamic in each slope value in the trajectories is making 
up of a number determinate of behaviors; each 
associated with a set eigenvalue characteristic each 
system dynamic class. The relative significance of each 
mode the behavior is determinate by the state of model 
with respect the vector of slope values and the directions 
of eigenvalue right in consequent with the eigenvalues 
value. 
For some problems, in addition to the measure of 
similarity based on the characteristics of the curvature 
and smoothness in the general behavior of the 
trajectories with to the oscillatory features, it can be 
important to consider the concrete parameters of wave 
simples that appear in the trajectories order to identify 
similar temporary patterns in the same ones. 
A trajectory can be split in segment indicating the local 
Tendencies of such form that each segment is limited by 
means of a point of inflection or by a point of inflection 
end. 
The bases conceptual for specific temporal parameters 
allow descriptions of the form of pattern of trajectories. 
Some examples are: The number and size of hills and 
duration, the slope and curvature, the moment of 
appearance and pattern duration, when its will change the 
factors of category. The change of status and move have 
an effect on the value of the parameters, the 
measurements similarity are avail for the recognition and 
comparison of specific pattern of trajectories. 
 

Convexity properties of seismic inversion 
 
Our principal example will be first arrival travel time 
inversion.  The sentence of problem is this: Given the 
locations of sources and receivers of some type of 

exciting waves (seismic) and the first arrival travel time 
i

t  
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for waves propagated between the m pairs of sources 

and receivers(labeled by 1,...,i m= ) deduce the 

eigenvalue by weighted square error in the travel time in 
the region probed by these waves. 
Fermat’s principle (Born and Wolf 1959) say that first 
arrival travel time for   i-th ray path is given by 
 

[ ]*min path

i i i
path

t sdl sdl s= =∫ ∫                 (1) 

Where 
path

i
l is the arc length along any connected path 

between the source and receiver and where [ ]*

i
l s is the 

arc length along a ray path that minimizes the integral of 
the travel time for i-th path wave slowness s . 

Some easy but import facts follow from the variation 
definition (1) of the first arrival travel time  
Lemma 1: (concavity and homogeneity). The travel time 

( )
i

t s is a concave and homogenous function of the 

model slowness s . Note that, for 1 20, 0s s≻ ≻ , 

0 1λ≤ ≤ . 

 

( ) ( )( )1 2 1 2( ) 1 ( ) 1
i i i

t s t s t s sλ λ λ λ+ − ≤ + −         (2) 

 
Lemma 2: (scale Invariance of ray path).   A ray path with 

arc length [ ]*

i
l s  that minimize the travel time for s  also 

minimizes the travel time for sγ where γ  is any positive 

scalar. 
 One method for solving the inverse problem is to guess a 

model 
g

s that might have giving rise to the measured 

data, compute the set travel time ( )
i g

t s  for the trial 

model  , and then use some method (often base on least-
square fitting) to update the model and obtain a better fit 
to the data. However, such programing methods are 
generally limited by fact that it may be computationally 

difficult to find the exact 
*

i g
l s    associated with the 

trial slowness. 
Systematic inversion techniques have been applied to 
travel time data from marine refraction profiles in the 
Pacific Ocean and are compared with the conventional 
uniform layer solutions for the same profiles. Extremes 
bounds are obtained on the possible velocity-depth 
distributions which fit the travel time data. Also a 
linearized inversion is used to construct suitable velocity-
depth profiles together with a measure of their resolution. 
The velocity structures obtained indicate that layer 2 is a 
region of strong velocity gradients while layer 3 is 
relatively homogeneous, although it does show an 
increase in velocity with depth. The inverse schemes offer 
a useful alternative to fitting models containing uniform 
layers to the travel times from a seismic refraction profile. 
Shaping regularization is a general method for imposing 
constraints on the estimated model in the process of 
solving an inverse problem. In this paper, I extend the 
concept of shaping regularization to the case of nonlinear 
operators and show its connection to the nonlinear 

Landweber iteration and related iterative inversion 
methods. An example application is 1‐D seismic inversion 
that extracts an interval velocity model from plane‐wave 
(tau‐p) move out analysis. I develop a nonlinear inversion 
scheme that utilizes local seismic event slopes and apply 
it to a synthetic data example to demonstrate an 
application of nonlinear shaping regularization. Different 
regularization strategies produce smooth or blocky 

(layered) models. 
 
Structural similarity travel time curve. 

 
The similarity structural refers to behavioral of patterns as 
"changes of shape in time” and considers our ability to 
recognize them as anything essential to understanding 
complex dynamic system. But, ¿ what are the essential 
shapes of dynamic behavior?  We use seven unique 
behavior pattern based on the net rates of change of the 
variables of interest. (See Table I)[8]. 

 
Table 1 Even Rules and Atomic Behaviour  

 
The Trends in the absolute values of net rates   changes 
can be used to uniquely identify seven atomic behavior 
patterns.  The first pattern was    called     “growth 
reinforced" its behavior is concave upward, with   a 
monotonic increase.    The second pattern is well   know 
how "linear growth” its behavior is linear increase.  The 
third pattern is nominated how “growth balancing”,   
behavior is concave, downward, with monotonic increase.   
Fourth pattern is denominate “decline reinforced” is 
concave downward, with a monotonic decrease; the fifth 
pattern is "linear decline" with   linear decrease. the sixth 
pattern has a behavior concave downward with 
monotonic decrease, it’s called "balancing decrease”   
and   lastly the   pattern (seventh)   is a linear behavior 
and it introduce when there is “equilibrium"[3] 

 

Method 
 

The identification of parameters is characterized by a 
systematic process and complicated, possibly facilitated 
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by an analysis of the structures of certain simple linear 
systems that can get to specify and implement 
computationally. 
 
To identify the parameters from few training data sets, 
you have to make restrictions to estimate dynamic 
systems desirable. This restriction is based on dynamic 
stability, the key idea to estimate the dynamic stability is 
restricted to the eigenvalues. 

The identification of the system without restriction is 
conditional if the time range [b, e] is represented by linear 

dynamical system 
i

D  then we can estimate the transition 

matrix 
( )i

F  and the bias vector 
i

g  of the sequence of 

internal states 
( ) ( )

,...,
i ï

b ex x 
  , this to estimate the 

parameters problem becomes a  problem with 
minimization the errors of predict[7].  
 
This prediction error vector can be determined from 

equation (3) and have estimated the matrix
( )i

F  and the 

bias vector
i

g  and its formulation is: 

( ) ( )

1

i i

t t t
x F x gε −= − +     (3) 

So the sum of the rules of the squares of all the errors 
vectors in the range [b, e] becomes [7]:  

2

( ) ( )

1

, arg min min               
e

i i

t

t b

F g e
= +

= ∑   (4) 

Finally we can estimate the optimal values of 
( )i

F and  
i

g  

by solving the following least squares problem. 
 

Given a continuous state sequence mapped from the 
observation space, the parameters estimation of a 

transition matrix 
( )i

F from the sequence of continuous 

state vectors 
( ) ( )

,...,
i ï

b ex x 
  becomes a minimization 

problem of prediction errors. Let us use the notations 
follow:  

( ) ( ) ( )
0 1,...,
i i i

b ex x x −
 =                               (5) 

( ) ( ) ( )
1 1,...,

i i i

b ex x x+
 =                               (6) 

 
If temporal range [b, e] is represented a linear dynamic 

system. Then
i

D , we can estimate a transition matrix 
( )i

F  

by the following equations:  

( )

( )

( ) ( ) ( ) 2

0 1arg )(min
i

i i i i

F

F F x x
∗

= −              (7) 

By algebraic methods leads to: 

( ) ( ) ( ) ( ) ( )( )
2

1
2

0 1 0 0
( )min

i i i i i
F

δ

δ
−

∗
= +

T T

x x x x I           (8) 

WhereI , is unitary matrix and 
2

δ  is positive real value 

(called regularization factor). 

 

 Gershgorin Circle Theorem to Estimate the Eigenvalues  

 
For the constraints on the eigenvalues, the limit in the 

Equation (7) before 
( ) ( ) ( ) ( )( )

1
2

0 1 0 0

i i i i δ
−

+
T T

x x x x I  converges 

to a pseudo-inverse matrix
( )
0

i
x  of Using Gershgorin's 

theorem of linear algebra; we can determine the upper 
bound of eigenvalue in the matrix from its elements. 

Supposition  
( )
,

i

u v
f  is an element in row u  and column v  

of the matrix transition
( )i

F . Then, the upper bound of 

eigenvalues is determinate by
( )
,

1

max
n

i

u u v

v

f
=

= ∑B . 

Therefore, we search a nonzero value  
2

δ  , which 

controls the scale of element in the matrix, that satisfies 
the equation B=1 via an iterative numerical calculation [7]. 
 
Estimate Stable Dynamic 
 
To identify the system parameters from only a small 
amount of training data of state variables of a dynamic 
system, we need constrains the eigenvalues of matrix 
transition for estimation of an appropriate dynamic. In this 
paper , we concentrate in extracting the behaviors of the 
segments of trajectories observed for example, the atomic 
behavior patterns linear , exponential and logarithmic; 
therefore , the restriction is based on stability of dynamic, 
that are suitable to find motion that converge to a certain 
state from an initial position. The key idea to estimate 
stable dynamic is the method that constrains eigenvalues. 
If all eigenvalues are lower than one, the dynamic system 
change state in a stable manner [7]. 
 

Examples 

 
In the fig 1, it is illustrated the travel time one of the 11 
geophone gathers. In this model, there are 600 shots 
evenly deployed on the surface, and 12 geophones 
evenly placed in the center well (offset 3000 m) at the 
depth range from 1900 m to 2120 m. From it we can see, 
migration of VSP multiples has a much larger imaging 
area than migration of VSP primaries 
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Fig 1. Travel time from gather  
 

In the fig 2, it is illustrated the concept of structural 
similaridad, the curve trajectory of the travel time 
qualitative features variable labeled by different colors 
and the graphic  of the inferior part corresponds to a 
behavior of a system in feature space. The pattern (blue, 
yellow, red, green, yellow and black) correspond a value 
of curvature and slope. They converge a zero. 

 

Fig 2 Pattern and Values of Features Space  
 
A simple example of multiple solutions for a single, un-
reversed travel time curve, obtained by identifying 
segments with refracting horizons in different ways, is 
illustrated by the curve of Figure 3a. 
The Inflections corresponding to crossover points are 
nearly. Always it’s manifested by a decrease in slope of 
the travel time curve (an increase in apparent velocity) 
with increased distance from the shot point as illustrated 
in the reversed travel time curves of bottom in the figure 
3b. If changes in dip or velocity of overlying layers are 
involved, the crossover point may actually be marked by 
an increase in slope (a decrease in apparent velocity) 
with increased distance from the shot point, or by no 
inflection at all. 
. 

 

 Fig 3 Temporal Clustering and Inflection Point  

 
These examples illustrate the diversity of shapes of travel 
time curves that can result from relatively simple 
subsurface changes. As geology becomes complex, the 
resulting complexities increase to the point where simple 
identification of cause and effect is impossible. Figure 3, 
for example, illustrates a travel time curve with a marked 
inflection in one direction but none in the reverse 
direction. The computed model is the trough-like feature 
of laterally varying velocity shown as the basal layer in top 
of the figure (3). 

 Result experimental. 

In table 2 we shows the clustering of travel time and 
eigenvalue from the application of circles de Gershgorin 
for    matrixes estimated in inverse travel time methods.  

Table 2 clustering and eigenvalue of inverse travel time 
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Conclusions 

 
Multiple solutions may be obtained from singly reversed 
Profiles, it is shown in Figure 3a. One possible solution 
(Figure 3b) is based on the assumption that each line 
segment of the travel time curve corresponds to a 
different layer. An equally valid two-layer solution that 
might be obtained from shooting across an alluvial valley . 
Additional data are required to resolve the ambiguity. 
Figure 3b shows the effect of a change in velocity of 
horizon with no change in dip. We note approximately 
equal intercept times for both shot points because depth 
is constant, and a higher apparent velocity of the travel 
time curves over the part of layer four with the higher 
velocity. For the case of a gradual change in dip or curved 
horizon with constant velocity (Figure 3b yellow colors ), 
the intercept times at opposite shot points are significantly 
different and the apparent velocity of the reversed curves 
increases in opposite directions, similar to the effect an 
increase in velocity with depth. 
These examples show that the interpreter must 
distinguish breaks in slope of travel time curves due to 
crossovers from those due to lateral geologic changes. 
This must be done before applying algorithms to calculate 
the lateral changes in velocity and depth of the individual 
horizons which satisfy the perturbations of travel time 
curves Lateral effects problem deals with the effect of the 
lateral changes along the upper refracting interfaces on 
the lower refractors. The recorded travel time curve from 
the lower refractors usually has pseudo number of 
inflection points and travel time elements. An increase or 
decrease in the number of the travel time elements along 
the travel time curve is a result of these lateral variations. 
Linear travel time elements are defined as linear 
segments with the same slope and consequently the 
same apparent velocity. Such travel time curves cannot 
be explained directly by most of shallow refraction seismic 
interpretation methods. To identify this problem two travel 
time parameters are used. These are layer reciprocal time 
and the apparent refractor velocity. Reversed profiling 
technique is essential. The ray tracing technique is used 
in this study to compute the synthetic travel time curves of 
first arrivals. Surprisingly, this problem is rarely discussed 
in literature, and if ever, it is often without suggestions for 
interpretation, so the name lateral effects is used to define 
it. 
 

Acknowledgments 
Agradecemos a  la Universidad de Pamplona por la 
dedicación de su cuerpo docente en la participación de 
las convocatorias de Colciencias y otras instituciones 
como Ecopetrol 

 

 

 

 

 

 

 

References 
 
[1] Berryman G. James, Seismic cross hole Tomography 
and Nonlinear constrained optimization,   University of 
California, Lawrence Livermore National Laboratory, P.O. 
Box 808 L-156, Livermore, CA94550 
[2] Billette Frédéric, Velocity macro model estimation in 
seismic reflection by Stereo tomography, PHD Thesis, 
Denis Diderot University, 17 Dec 1998. 
[3] Casanta Lorenzo, Fomel Sergey, Velocity-
Independent τ -p move out in a Horizontally –layered VTI 
medium, Geophysics 76, no 4,U45-U57,(2011) 
[4] Courrieu, P., Fast Computation of Moore-Penrose 
Inverse Matrices, Neural Information Processing - Letters 
and Reviews, Vol.8, No.2, August 2005. 
[5] Das, G., Gunopulos, D., Mannila, H. (1997), Finding 
Similar Times Series.In: Komorowski, J., Zytkow, J. (Eds) 
Principles of Data Mining and Knowledge Discovery. 
Proceedings of the First European Symposium  PKDD ́97, 
Trondheim, Norway 1997, Springer, 1997 .pp 80-100. 
 [6]  Moret J.M.,Clement William P.,Knoll Michael and 
Barrash Warren,Vsp travel time inversion: Near Surface 
Issues, Geophysics , Vol 69, No 2 (March-April) 2004, 
[7] Joentgen., Mikenina. Weber, R., Zimmerman, H.-J., 
(1998), Dynamic Fuzzy Data Analysis: Similarity between 
Trajectories. In: Bauer. (Ed.) Fuzzy Neuro System’ 98, 
computational intelligency, Sankt, augusting, p 98-105. 
[8] Kawashima, H., Matsuyama, T. , Proc. 3rd 
International Conference on Advances in Pattern 
Recognition (S. Singh et al. (Eds.): ICAPR 2005, LNCS 
3686, Springer), pp. 229-238, 2005 
[9] Mikenina,Geb, Angstenberger , Larisa, Dynamic Fuzzy 
Pattern Recognition, Diese Dissertation ist auf den 
Internetseiten der Hochschulbibliothek online ver,2000 
[10] Joentgen., Mikenina. Weber, R., Zimmerman, H.-J., 
(1998), Dynamic Fuzzy Data Analysis: Similarity between 
Trajectories. In: Bauer. (Ed.) Fuzzy Neuro System’ 98, 
computational intelligency, Sankt, augusting, p 98-105 
[11] T. Sabsevary,A.Talebi, R. Adarkanian,A. Shamsai,A 
steady saturation model to determine  the subsurface 
travel time (STT) in complex hill slopes, Hydrology and 
Earth System Science , Copernicus Publication on behalf 
of the European Geosciences union, 4 June    2010 
[12] Shahriari K,Tarasiewicz S,Adrot O, Linear Time-
varying System: Theoryand identification of model 
parameters , WSEAS TRANSACTION onSYSTEM 
,ISSUE 1 Volume 7,2008 ,January 2008. 
[13] Stephen Ralph , Harding Alistair ,Travel time Analysis 
of Borehole Seismic Data, redistribution subject to SEG 
,29 Mar 2013.   
 [14] Zhang Jie, Toksoz  Nafi, Nonlinear refraction travel 
time tomography, Geophysics  Vol 63,No 5 , September –
October 1998. 

 

 

 

 

 

 


